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LEITER TO THE EDITOR 

A symmetric matrix method for Schrodinger eigenstates 

Dennis Dunn and Brian Grieves 
J J Thomson Physical Laboratory, University of Reading, Whiteknights, Reading RG6 ZAF, 
UK 

Received 21 September 1989 

Abstract. I t  is shown how the one-dimensional Schrodinger eigenvalue equation can be 
transformed into a symmetric generalised matrix eigenproblem with a local truncation error 
of only S4, where S is the step size, as in the Numerov algorithm. Standard sparse matrix 
library packages are available for the solution and it is demonstrated that groups of 
eigenvalues and their associated eigenvectors (wavefunctions) can be determined simul- 
taneously with high precision and speed. 

In many branches of physics there is a need for the accurate determination of eigen- 
values and eigenfunctions of the one-dimensional Schrodinger equation. This may be 
an end in itself or merely the starting point for, for example, a many-body calculation. 

If a large number of eigenfunctions is required then the conventional techniques 
are very inconvenient. These are usually 'shooting methods' based either on the 
Numerov-Cooley algorithm [ 11 or on the Pruefer transformation to a phase function 
[ 2 ] .  Ixaru and Rizea [3] have recently shown how to adapt the Numerov-Cooley 
method specifically to the Schrodinger equation and Eckart [4] has developed an 
extrapolation technique to improve the accuracy of the eigenvalue and has also shown 
how (with considerable difficulty) the method can be applied in two dimensions. Such 
methods work on one eigenstate at a time and in many algorithms? the step size, which 
determines the coordinates at which the eigenfunction is evaluated, is generated 
internally. This means that different eigenfunctions are determined at different sets of 
coordinates, making the calculations of matrix elements inconvenient. 

One solution to this problem was presented by Cooney et a1 [ 5 ] .  Their method 
was to use the standard second-order finite difference expression [ 6 ]  for the second 
derivative and thus replace the differential equation 

- h 2  d2 - - W ( x ) +  V ( x ) W ( x )  = E W ( x )  
2m dx' 

by the difference equation 

+ V,W, = EW, 
2m 

where 9, = W ( x , ) ,  V, = V ( x , )  and 6 = x n + ,  - x ,  is the step size. The set of linear 
equations can then be solved as a symmetric matrix eigenvalue problem [7]. 

t The NAG algorithm D O ~ K E F  which uses a scaled Prufer phase function transformation is an example. 
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One advantage of this simple technique is that the eigenfunctions are determined 
at a common set of coordinate values, thus facilitating the calculation of matrix 
elements. Another advantage is the availability of many ‘off the shelf’ high-quality 
subroutines from such matrix libraries as EISPACK [8], NAG [9] and Harwell [lo]. 

A disadvantage is that the difference equation (2) is not a very good representation 
of the Schrodinger equation (l) ,  the error in the representation relative to ( 2 m E /  h 2 ) 9 , ,  
being 

AS’Y p. (3) 

In order to overcome this problem the Numerov-Cooley algorithm replaces (2) by the 
second-order difference equation 

The relative error in the representation is then reduced to 
29 4 ( 6 )  m6 q n .  

Unfortunately this leads to an asymmetric matrix equation and, whilst techniques exist 
for such problems, they are not nearly as efficient as those for the symmetric case. 

We set out to improve the simple algorithm represented by equation (2) but to 
force the resulting difference equation into the symmetric form 

AYr = Ea* ( 6 )  

where V is a column vector and A and a are symmetric tridiagonal N x N matrices. 
The only non-zero elements of A and a are denoted by 

A n n  = An 

a,  n + l =  anti n = b n  n = 1,. . . , N-1. 

The values of these parameters which minimise the error in the representation of the 
differential equation are 

h2  V+4Vfl  ma’ 
A, =y+-+z V,( V, - V) 

ma 6 6 h  

-h’ v,,, + v, - V B, =- 
2ms2 

+ 
12 

where is some ‘average’ potential. 

error in the representation is 
As S tends to zero these reduce to the Numerov-Cooley expressions. The relative 

&a“( v, - V)*‘,*’+&jS4qy (9) 

which is of the same order in S as the Numerov-Cooley algorithm (although involving 
a lower-order derivative). V may be chosen to further reduce this error. 
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The solutions for A,  and a ,  do not (necessarily) apply at the boundaries. We 
denote the boundaries by x = a and x = /3 and we consider only two types of boundary 
condition 

T(ff)=O or @ l ) ( f f )  = 0 

W) = 0 or W,@) = 0. 

and 

For the lower boundary, if q vanishes then x l  = a + S and the equation (8) is valid 
for A ,  and a , .  If the derivative 9") vanishes then x, = S and A ,  and a ,  are precisely 
one-half the values given by equation (8). Similar results hold for the upper boundary. 

Equation (6) represents a symmetric generalized eigenvalue problem and the well- 
known matrix subroutine libraries (EISPACK, NAG, Harwell) all contain procedures 
for its solution. See also Parlett [7] for a general discussion of the most recent methods 
for the symmetric eigenvalue problem and for the symmetric generalised eigenvalue 
problem. Kaufmann [ l l ]  has presented methods for the solution of equation ( 6 )  on 
vector machines. 

In order to demonstrate the effectiveness of the procedure, we have applied it to 
the one-dimensional harmonic oscillator using the NAG routines F O ~ F J F  and F O ~ L E F .  

In dimensionless form this Schrodinger equation is 

(10) 
d2 

dx2 
--'P+x2q = E* 

and the exact eigenvalues and (unnormalised) eigenfunctions are 

E ,  = ( 2 v +  1) v u  = exp(-x ' /2 )~ , (x)  (11) 

where H ,  is a Hermite polynomial. 
Table 1 shows the eigenvalues and the R M S  errors in the first eight odd eigenfunctions 

calculated using the present algorithm and the simple algorithm (2). In both cases the 
values of N and S were taken to be 100 and 0.08 respectively. The results show clearly 
the improved accuracy that has been obtained. 

The simple algorithm is somewhat quicker. The CPU times for the present method 
and the simple method to determine these eight eigenfunctions using an Amdahl 5870 
were respectively 0.72 s and 0.56 s. 

Table 1. Eigenvalues E ,  and RhlS errors in the first eight odd eigenfunctions, calculated 
using the present algorithm compared with those using the simple algorithm. 

Present Algorithm Simple Algorithm 

R M S  eigenfunction RMS eigenfunction 
V E" error E" error 

1 2.999 997 8.99 x io-' 2.998 8.38 x 1 0 - ~  
3 6.999 98 3 . 8 4 ~  lo-' 6.989 2.38 x  IO-^ 
5 10.99995 1 . 9 8 ~  1 0 - ~  10.98 6.32 x 10-3 
7 14.99987 4 . 8 0 ~   IO-^ 14.95 1.13 x lo-' 
9 18.999 7 9.54 x 1 0 - ~  18.93 1.78 x lo-' 

11 22.9996 1 . 6 8 ~  1 0 - ~  22.89 2.59 x lo-* 
13 26.9993 2.70 x 26.85 3.55 x 
15 30.9989 4.07 x 30.81 4.67 x IO-' 
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Table 2. As for table 1 but demonstrating the poorer accuracy of the simple algorithm. 

Present algorithm Simple algorithm 
N = 100 S = 0.08 Time = 0.72 s N = 1050 8 = 7.619 x 10.’ Time = 4.92 s 

RMS eigenfunction RMS eigenfunction 
U E” error E“ error 

1 2.999 97 8.99 x lo-’  2.999 98 7.59 x 
3 6.999 98 3.84 x 6.999 91 2.58 x io-’ 

7 14.999 87 4.80 X lo-’ 14.999 6 1.02 x 1 0 - ~  
9 18.999 7 9.54 X lo-’ 18.999 3 1.61 x 1 0 - ~  

11 22.999 6 1.68 x los4 22.999 0 2.33 x 1 0 . ~  
13 26.999 3 2.70 x 26.998 7 3.19 x 1 0 - ~  

5 10.999 95 1.98 x lo- ’  10.999 8 5.81 x lo-’ 

15 30.998 9 4.07 X 30.998 4 . 1 9 ~  

However, this slight increase in speed does not compensate for the poorer accuracy. 
To demonstrate this we have progressively reduced the step size (and correspondingly 
increased the size of the matrix) for the simple algorithm so as to produce approximately 
the same accuracy as is achieved with 8 = 0.8, N = 100 for our present method. The 
results are shown in table 2. 

Quite clearly the algorithm we have presented provides a rapid and accurate method 
of determining simultaneously a group of eigenvalues and their eigenvectors. 

Although the results presented refer only to the harmonic oscillator, the method 
is quite general. The only restriction is that the potential is non-singular (except at the 
boundaries). 

The work of one us (BG) was supported by the United Kingdom Science and Engineer- 
ing Research Council. 
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